2,390 research outputs found

    NIHAO project II: Halo shape, phase-space density and velocity distribution of dark matter in galaxy formation simulations

    Get PDF
    We use the NIHAO (Numerical Investigation of Hundred Astrophysical Objects) cosmological simulations to study the effects of galaxy formation on key properties of dark matter (DM) haloes. NIHAO consists of ≃90\simeq 90 high-resolution SPH simulations that include (metal-line) cooling, star formation, and feedback from massive stars and SuperNovae, and cover a wide stellar and halo mass range: 106<M∗/M⊙<101110^6 < M_* / M_{\odot} < 10^{11} ( 109.5<Mhalo/M⊙<1012.510^{9.5} < M_{\rm halo} / M_{\odot} < 10^{12.5}). When compared to DM-only simulations, the NIHAO haloes have similar shapes at the virial radius, R_{\rm vir}, but are substantially rounder inside ≃0.1Rvir\simeq 0.1R_{\rm vir}. In NIHAO simulations c/ac/a increases with halo mass and integrated star formation efficiency, reaching ∌0.8\sim 0.8 at the Milky Way mass (compared to 0.5 in DM-only), providing a plausible solution to the long-standing conflict between observations and DM-only simulations. The radial profile of the phase-space QQ parameter (ρ/σ3\rho/\sigma^3) is best fit with a single power law in DM-only simulations, but shows a flattening within ≃0.1Rvir\simeq 0.1R_{\rm vir} for NIHAO for total masses M>1011M⊙M>10^{11} M_{\odot}. Finally, the global velocity distribution of DM is similar in both DM-only and NIHAO simulations, but in the solar neighborhood, NIHAO galaxies deviate substantially from Maxwellian. The distribution is more symmetric, roughly Gaussian, with a peak that shifts to higher velocities for Milky Way mass haloes. We provide the distribution parameters which can be used for predictions for direct DM detection experiments. Our results underline the ability of the galaxy formation processes to modify the properties of dark matter haloes.Comment: 19 pages, 17 figures, analysis strongly improved, main conclusions unchanged, accepted for publication in MNRA

    Establishing connectivity between the existing networked music notation packages Quintet.net, Decibel ScorePlayer and MaxScore

    Get PDF
    In this paper we outline a collaboration where live internet-based and local collaboration between research groups/musicians from Decibel New Music Ensemble (Perth, Australia) and ZM (Hamburg, Germany), was facilitated by novel innovations in customised software solutions employed by both groups. The exchange was funded by the Deutscher Akademischer Austauschdienst and Universities Australia. Both groups were previously engaged in the research and performance of similar musical repertoire such as John Cage\u27s \u27Five\u27 (1988) and \u27Variations I — VIII\u27 (1958-67) among others, the performances of which utilise graphic, animated and extended traditional Western music notation. Preliminary steps were taken to achieve communication between the three existing network music notation packages, the Decibel ScorePlayer, MaxScore and quintet.net, facilitating a merging – and ultimately an extension – of notational approaches previously prescribed by each music notation package. In addition to the technical innovations required to achieve such a project, we consider the outcomes and future directions of the project, as well as their relevance for the wider contemporary music community

    ConstitutionMaker: Interactively Critiquing Large Language Models by Converting Feedback into Principles

    Full text link
    Large language model (LLM) prompting is a promising new approach for users to create and customize their own chatbots. However, current methods for steering a chatbot's outputs, such as prompt engineering and fine-tuning, do not support users in converting their natural feedback on the model's outputs to changes in the prompt or model. In this work, we explore how to enable users to interactively refine model outputs through their feedback, by helping them convert their feedback into a set of principles (i.e. a constitution) that dictate the model's behavior. From a formative study, we (1) found that users needed support converting their feedback into principles for the chatbot and (2) classified the different principle types desired by users. Inspired by these findings, we developed ConstitutionMaker, an interactive tool for converting user feedback into principles, to steer LLM-based chatbots. With ConstitutionMaker, users can provide either positive or negative feedback in natural language, select auto-generated feedback, or rewrite the chatbot's response; each mode of feedback automatically generates a principle that is inserted into the chatbot's prompt. In a user study with 14 participants, we compare ConstitutionMaker to an ablated version, where users write their own principles. With ConstitutionMaker, participants felt that their principles could better guide the chatbot, that they could more easily convert their feedback into principles, and that they could write principles more efficiently, with less mental demand. ConstitutionMaker helped users identify ways to improve the chatbot, formulate their intuitive responses to the model into feedback, and convert this feedback into specific and clear principles. Together, these findings inform future tools that support the interactive critiquing of LLM outputs

    NIHAO IV: Core creation and destruction in dark matter density profiles across cosmic time

    Full text link
    We use the NIHAO simulations to investigate the effects of baryonic physics on the time evolution of Dark Matter central density profiles. The sample is made of ≈70\approx 70 independent high resolution hydrodynamical simulations of galaxy formation and covers a wide mass range: 1e10< Mhalo <1e12, i.e., from dwarfs to L* . We confirm previous results on the dependence of the inner dark matter density slope, α\alpha, on the ratio between stellar-to-halo mass. We show that this relation holds approximately at all redshifts (with an intrinsic scatter of ~0.18 in α\alpha). This implies that in practically all haloes the shape of their inner density profile changes quite substantially over cosmic time, as they grow in stellar and total mass. Thus, depending on their final stellar-to-halo mass ratio, haloes can either form and keep a substantial density core (size~1 kpc), or form and then destroy the core and re-contract the halo, going back to a cuspy profile, which is even steeper than CDM predictions for massive galaxies (~1e12 Msun). We show that results from the NIHAO suite are in good agreement with recent observational measurements of α\alpha in dwarf galaxies. Overall our results suggest that the notion of a universal density profile for dark matter haloes is no longer valid in the presence of galaxy formation.Comment: 11 pages, 13 figures. Corrected typo in table 2 (middle row) with respect to the version published in MNRA
    • 

    corecore